
 | 1

UDAP Specifications (For Second Screen TV and

Companion Apps)

This document describes the UDAP (Universal Discovery & Access Protocol) concept and provides the protocol
specification and service profiles in detail. Developers can acquire the knowledge needed to implement the Controller
application to control the LG Smart TV.

LG UDAP 2.0 Protocol Specifications

This section describes the UDAP concept and the protocol specification in detail. In this document, developers can
acquire the protocol-related knowledge needed to implement the Controller application to control the LG Smart TV.

LG UDAP 2.0 Service Profiles

This section describes the actual operation of the service utilizing the UDAP and the details of the API.

Note

UDAP 2.0 is only supported in NetCast 3.0 (LG Smart TV models released in 2012) and NetCast 4.0 (LG Smart TV
models released in 2013) platforms.

This document is also provided in Korean. You can download it from [DISCOVER > Legacy Platform
(NetCast) > Technical Notes].

http://webostv.developer.lge.com/discover/netcast/technical-notes/
http://webostv.developer.lge.com/discover/netcast/technical-notes/

 | 2

Contents

LG UDAP 2.0 Protocol Specifications 4

UDAP Overview .. 4

Protocol Stack .. 5

Discovery .. 7

M-SEARCH Request ... 7

M-SEARCH Response .. 9

Extensions (B-SEARCH) ... 10

Implementation Example ... 11

Description .. 12

Structure of Description Document .. 13

Examples of Description Document .. 14

Utilization of Description Document ... 17

Pairing .. 18

Request Pairing Key (Controller >> Host) ... 19

Request Pairing (Controller >> Host) .. 20

End Pairing (Controller <<->> Host) .. 21

IP Address Change Notification (Controller <<->> Host) .. 22

Pairing Scenario... 24

Command, Event, Query ... 24

Common Rules .. 25

Command (Controller >> Host) .. 27

Event (Controller <<->> Host).. 28

Query (Controller >> Host) .. 30

Examples of Controller Application Operation ... 32

Annex A URL Encoding Reference.. 33

LG UDAP 2.0 Service Profiles .. 39

Service Profile Overview ... 39

Types and Roles of Service Profiles .. 39

Descriptions of All Service Profiles .. 39

Remote Controller Service (netrcu) ... 40

Discovery & Description ... 41

Command (Controller >> Host) .. 42

HandleKeyInput ... 42

HandleTouchMove ... 42

HandleTouchClick ... 43

HandleTouchWheel .. 44

HandleChannelChange .. 45

Event (Controller <<->> Host).. 45

CursorVisible (Controller <<->> Host) ... 46

ChannelChanged (Controller << Host) .. 47

 | 3

CallStateChanged (Controller >> Host) ... 48

DragMode (Controller >> Host) .. 49

3DMode (Controller << Host) .. 49

Query (Controller >> Host) .. 50

Current channel information (Controller >> Host) ... 50

Entire channels list (Controller >> Host) ... 52

Operation mode of the Host UI (Controller >> Host) ... 53

Volume information of the Host (Controller >> Host) ... 53

Obtaining the capture image of the Host (Controller >> Host) .. 54

3D mode of the Host (Controller >> Host) ... 54

Usage Scenario ... 55

Text Input Service (smartText) .. 55

Discovery & Description ... 55

Event (Controller <<->> Host).. 56

KeyboardVisible (Controller << Host) .. 56

TextEdited (Controller <<->> Host) ... 58

Usage Scenario ... 59

Mobile Home Service (mobilehome) .. 60

Discovery & Description ... 61

Command (Controller >> Host) .. 61

AppExecute (Controller >>Host) .. 62

AppTerminate (Controller >> Host) ... 62

Event (Controller <<->> Host).. 63

Mobilehome_App_Errstate (Controller << Host) ... 63

Mobilehome_App_Change (Controller << Host) ... 64

Query (Controller >> Host) .. 65

Obtaining the Apps list (Controller >> Host) .. 65

Obtaining the number of Apps (Controller >> Host) ... 66

Obtaining the icon image of App (Controller >> Host) .. 67

Usage Scenario ... 67

App To App Service (AppToApp) .. 68

Discovery & Description ... 68

Command (Controller >> Host) .. 69

Launch Application (Controller >> Host) ... 69

Terminate Application (Controller >> Host) .. 70

Send Message (Controller >> Host) ... 70

Event (Controller <<->> Host).. 71

Receive Message (Controller << Host) ... 71

Query (Controller >> Host) .. 71

Get Application AUID (Controller >> Host) ... 72

Get Application Status (Controller >> Host) ... 73

Usage Scenario ... 73

Annex A Table of virtual key codes on remote Controller .. 74

 | 4

LG UDAP 2.0 Protocol Specifications

This document describes the Universal Discovery & Access Protocol (UDAP) concept and the protocol specification
in detail. In this document, developers can acquire the protocol-related knowledge needed to implement the
Controller application to control the LG Smart TV.

 UDAP Overview
 Discovery
 Description
 Pairing
 Command, Event, Query
 Examples of Controller Application Operation
 Annex A URL Encoding Reference

UDAP Overview

UDAP (Universal Discovery & Access Protocol) is a HTTP/1.1-based protocol defined by LG, that is intended to
provide the environment to enable users to control fast-evolving smart home appliances, including smart TV, by using
various devices such as a smart phone or tablet PC, and share their contents.

UDAP allows smart device application developers to develop various applications as they want by utilizing LG
products, and allows users to utilize LG products more easily and in various ways by downloading the applications
suitable for their smart devices.

The figure below displays the communication flow between a smart TV and a smart phone in diagram form.

 Controller: A device that provides users with a certain service application with user interfaces
 Host: A device that communicates with a Controller and provides a service requested by the Controller

A Controller and a Host must both be connected to the same local network through a router for communicating to
each other, and up to 12 Controllers can connect to a Host simultaneously.

An LG smart TV acts as a Host and users can connect the LG smart TV to a router using wired technology or
wirelessly.

[Figure] Communication flow between devices

This chapter includes the following section.
 Protocol Stack

 | 5

Protocol Stack

The UDAP uses the following protocol stack based on the communication concept of UPnP Device Architecture. As a
Host, the LG smart TV is not involved in addressing because it delegates this to its network configuration software
which is separately operated. A Controller such as a smart phone or tablet PC is also not required for addressing.
The network configuration function of each device can be used for addressing.

[Figure] Conceptual diagram of protocol stack - UPnP and UDAP

Note

UDAP is based on the UPnP architecture concept, but it is different from UPnP.

The conceptual diagram above consists of the following protocol stacks from the perspective of software
configuration.

[Figure] Protocol stack

Based on the protocol stack in the figure above, each of Discovery/Description/Pairing/Command, Event and Query
has a role and significance as follows:

[Table] Protocol stack type

Protocol stack type Description

Discovery
It is used to search for a device.
A Controller sends the SSDP request and a Host sends the SSDP response.

Description
It is used to get the description of the searched service.
The M-SEARCH response header of Discovery informs a Controller of the URL where
the description can be found, in the Location field.

 | 6

Protocol stack type Description

Pairing This confirms that a Controller is the valid device which can access a Host.

Command A Controller sends a command to control a Host.

Event
A Controller and a Host send an event to each other when the status of a counterpart is
changed or a specific event occurs.

Query A Controller uses a query to obtain the data service information provided by a Host.

The Description/Pairing/Command, Event or Query described in the table above uses the XML-based request and
response; the character encoding of all the XML documents uses UTF-8.

The figure below displays the communication process between a Controller and a Host in diagram form.

[Figure] Communication process

 | 7

Discovery

This chapter describes how a Controller searches for a Host using SSDP M-SEARCH.

Although the UDAP uses the same method as the SSDP M-SEARCH that is used in the UPnP, the value specified in
the ST (Search Target) of M-SEARCH is slightly different from the method defined in the UPnP.

The following protocol stacks are used to search for a Host using SSDP.

[Figure] Search protocol stack

This chapter includes the following sections.
 M-SEARCH Request
 M-SEARCH Response
 Extensions (B-SEARCH)
 Implementation Example

M-SEARCH Request

A Controller sends the M-SEARCH method of SSDP in multicast to search for a Host that is connected to the same
local network. The multicast address used is 239.255.255.250 and the port is 1900. These values are the same as

those defined in UPnP.

A Controller uses the following format defined in SSDP when sending M-SEARCH. A value in Italic font can actually
be specified by a Controller.

The M-SEARCH request starts with M-SEARCH * HTTP/1.1 and all the lines of a header end with “\r\n”. The last line
ends with “\r\n”. For example, the actual M-SEARCH request of a Controller is sent in the following format:

Each header field in the M-SEARCH request means the following:

[Table] M-SEARCH request header

Header Description

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: "ssdp:discover"

MX: Maximum time (in seconds) to wait for response of host

ST: URN value of service to search

USER-AGENT: OS/version UDAP/2.0 product/version

M-SEARCH * HTTP/1.1\r\n

HOST: 239.255.255.250:1900\r\n

MAN: "ssdp:discover"\r\n

MX: 3\r\n

ST: udap:rootservice\r\n

USER-AGENT: iOS/5.0 UDAP/2.0 iPhone/4\r\n

\r\n

 | 8

Header Description

HOST

Must be included

The field value consists of a multicast address and a port that are used in the SSDP and
must be the same as the following:
239.255.255.250:1900

MAN
Must be included

The field value specifies the value of "ssdp:discover" to be used for the search in SSDP.

MX

Must be included

Maximum time (seconds) to wait for the M-SEARCH response. It must be greater than 1,
but less than 5 seconds according to the UPnP standard.
Considering that several Hosts can be connected to the network, 3 seconds or longer is
recommended.

ST

Must be included

This specifies the Search Target to search for using M-SEARCH. The Search Target is
described below.

USER-AGENT

Must be included

An optional header in UPnP, but a required header in UDAP. This uses the OS/version
UDAP/2.0 product/version format. The OS and product information can be omitted, but
UDAP/2.0 must be included.

USER-AGENT USER-AGENT: iOS/5.0 UDAP/2.0 iPhone/4
USER-AGENT Android/4.0 UDAP/2.0
USER-AGENT UDAP/2.0

A ST value that specifies a target to search for using M-SEARCH is determined by the service configuration of a
target Host. A Host supporting UDAP usually supports more than one service. Service Profile is an application
comprising each of these services. The figure below shows the concept of the service profile configuration of a Host.

[Figure] Service profile configuration of a Host

In the figure above, rootservice means all the services in a Host and each service profile has a different service name.
A Controller can search for a Host by specifying a URN that corresponds to the name of a rootservice or each service
profile.

<ST value>

• udap:rootservice

Searches all the services of a Host and all the devices that support UDAP regardless of the service profile type.

• urn:schemas-udap:service:serviceName:version

Searches for a Host that has a service profile corresponding to serviceName.
For the details of the supported service profiles, refer to LG UDAP 2.0 Service Profiles.

 | 9

Note

If the information of several service profiles is accessed for creating a Controller application program, use
udap:rootservice to search for a Host.

For example, the actual M-SEARCH request of a Controller that searches for a Host that supports a service profile
where the text input is supported is as follows:

M-SEARCH Response

A Host that received the M-SEARCH request analyzes the ST value and then if the M-SEARCH request of a
Controller is valid, it sends the following response to the Controller using the UDP Unicast transport mechanism using
the source IP address and the port of the Controller. If the ST value of M-SEARCH is not valid, the Host does not
send the response to the Controller. The M-SEARCH response starts with HTTP/1.1 200 OK and all the lines of a
header end with “\r\n”. The last line ends with “\r\n”. A Controller can get an IP address that can be used to
communicate with a Host by getting the source IP of the M-SEARCH response.

An example of the actual response of a Host, described in M-SEARCH Request, which has a service profile that

supports text input is as follows:

Each header field in the M-SEARCH response means the following:

[Table] M-SEARCH request header

Header Description

CACHE-CONTROL
Valid time (in seconds) for communication with a Host. UDAP uses very high values in this
header. (172800 sec.)
A value is determined and forwarded using a directive called "max-age".

DATE Time in GMT when the response of a Host is created

EXT
A header that is set up in UPnP/1.1 for UPnP 1.0 compatibility. It is also added to a
response according to UPnP convention in UDAP.
There is only a header name, but no header value.

LOCATION
It specifies a URL value that can be used to get the description of a searched service using
M-SEARCH and this header value is in the absolute URL format.

HTTP/1.1 200 OK

CACHE-CONTROL: max-age = available time (in seconds) that Controller can communication

with Host

DATE: Time when the response is occurred

EXT:

LOCATION: HTTP that service can get description

SERVER: OS/version UDAP/2.0 product/version

ST: ST value that Controller requested

USN: composite identifier of M-SEARCH response

HTTP/1.1 200 OK\r\n

CACHE-CONTROL: max-age=172800\r\n

DATE: Wed Jul 11 05:55:53 2012 GMT\r\n

EXT: \r\n

LOCATION: http://192.168.10.51:8080/udap/api/data?target=smartText.xml\r\n

SERVER: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0\r\n

ST: urn:schemas-udap:service:smartText:1\r\n

USN: uuid:33068e81-3306-0633-619b-9b61818e0633::urn:schemas-udap:service:smartText:1\r\n

\r\n

M-SEARCH * HTTP/1.1\r\n

HOST: 239.255.255.250:1900\r\n

MAN: "ssdp:discover"\r\n

MX: 3\r\n

ST: urn:schemas-udap:service:smartText:1\r\n

USER-AGENT: iOS/5.0 UDAP/2.0 iPhone/4\r\n

\r\n

 | 10

Header Description

SERVER
Complies with the format of OS/version UDAP/2.0 product/version. It has the server
information of a Host that supports UDAP.

ST

This is the ST (Search Target) value that is sent by the M-SEARCH request and its format is
as follows:

• udap:rootservice

• urn:schemas-udap:service:serviceName:version

USN

A header that has a Unique Service Name. The value of a header is created in the following
format using the values of UUID (Universal Unique IDentifier) and ST (Search Target).

• uuid:uuid_of_Host_device::ST_of_response

After a Host sends a response to a Controller for a valid ST, it shows the following discovery results on its display to
help a Controller detect the Host.

[Figure] Host screen after discovery response

Extensions (B-SEARCH)

The B-SEARCH is an SSDP-based extension that supports the discovery of a Host that supports UDAP when it is
connected to a router which does not support multicast. When a request is transmitted, the broadcast address of a
network (255.255.255.255 or the broadcast address of a network interface) is used instead of a multicast address
(239.255.255.250), and port 1990 is used instead of port 1900.

In addition, B-SEARCH (Broadcast-SEARCH) is used instead of M-SEARCH for a method name and
255.255.255.255:1990 must be used as the value of a Host. The mechanism of request and response is exactly the
same as the description in M-SEARCH Request and M-SEARCH Response.

Note

M-SEARCH may not work on some routers while B-SEARCH will work on all routers. Therefore, if there is no Host
response for the MX value of M-SEARCH that is sent by a Controller, the Controller re-sends B-SEARCH to search
for a Host again.

 | 11

The format of the B-SEARCH request is as follows: Note that the method name is changed to B-SEARCH and the
value of a Host is changed to broadcast_address:1990.

The example of the actual B-SEARCH request and response is similar to those of M-SEARCH as below, and the
response from a Host is the same as that described in in M-SEARCH Response.

[B-SEARCH Request]

[B-SEARCH Response]

Implementation Example

The following example code is an example of a request or a response reception of a simple SSDP M-SEARCH in
Linux. This example is created on the assumption that there is only one Host in a local network. However, there may
be several Hosts in a network. In addition, the codes for exception handling and the parsing of the response header
must be created.

HTTP/1.1 200 OK\r\n

CACHE-CONTROL: max-age=172800\r\n

DATE: Wed Jul 11 05:55:53 2012 GMT\r\n

EXT: \r\n

LOCATION: http://192.168.10.51:8080/udap/api/data?target=smartText.xml\r\n

SERVER: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0\r\n

ST: urn:schemas-udap:service:smartText:1\r\n

USN: uuid:33068e81-3306-0633-619b-9b61818e0633::urn:schemas-udap:service:smartText:1\r\n

\r\n

B-SEARCH * HTTP/1.1

HOST: 255.255.255.255:1990

MAN: "ssdp:discover"

MX: Maximum time to wait host response (in seconds)

ST: URN value of service to search

USER-AGENT: OS/version UDAP/2.0 product/version

B-SEARCH * HTTP/1.1\r\n

HOST: 255.255.255.255:1990\r\n

MAN: "ssdp:discover"\r\n

MX: 3\r\n

ST: urn:schemas-udap:service:smartText:1\r\n

USER-AGENT: iOS/5.0 UDAP/2.0 iPhone/4\r\n

\r\n

 | 12

The result of the above example code is as follows:

Description

This chapter describes the information about a device that supports a service searched in the Discovery and the
Description which is used to obtain the list of Command/Event/Query.

The Description is described in XML format and is obtained by requesting the absolute URL in the LOCATION field of
the SSDP M-SEARCH response header to a Host using HTTP GET.

 | 13

The conceptual diagram showing the process for obtaining the Description for Service Profile 1 is shown below:

[Figure] Conceptual diagram of description process

This chapter includes the following sections.
 Structure of Description Document
 Examples of Description Document
 Utilization of Description Document

Structure of Description Document

The description of UDAP is defined in the XML document and the configuration diagram of the document is shown
below.

[Figure] Structure of description document

 | 14

The Description document provides the function of a corresponding service according to the ST value of the M-
SEARCH request.

• udap:rootservice

The information of command/event/query of all the services supported by a Host is described and several services
are described in the serviceList.

• urn:schemas-udap:service:serviceName:version

Only the information for command/event/query of a specific service is described and only one service is described
in the serviceList.

The document structure of the Description is displayed in an actual XML document as below. The bold black font is a
fixed value and the red Italic font may vary depending on Host.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <device>

 <deviceType>type of Host device</deviceType>

 <modelName>model name of Host device</modelName>

 <friendlyName>user-friendly name of a model</friendlyName>

 <manufacturer>LG Electronics</manufacturer>

 <uuid>Host device UUID value</uuid>

 </device>

 <port> HTTP communication port of a Host device</port>

 <serviceList>

 <service name="service name 1">

 <apiList>

 <api type="command">

 <name>command name 1</name>

 <name>command name 2</name>

 <!-- additional commands are listed if available -->

 </api>

 <api type="event">

 <name>event name 1</name>

 <name> event name 2</name>

 <name> event name 3</name>

 <!— additional events are listed if available -->

 </api>

 <api type="query">

 <name>query name 1</name>

 <!-- additional queries are listed if available -->

 </api>

 </apiList>

 </service>

 <service name="service name 2">

 <!-- command / event / query list for service 2 -->

 </service>

 <!-- additional services are listed if available -->

 </serviceList>

</envelope>

As shown in the XML document, the apiList describes the API name of a Host per command/event/query and the
information for each API call format is not described separately. For more information about an actual API call
format, refer to LG UDAP 2.0 Service Profiles. The services described in LG UDAP 2.0 Service Profiles comply

with the protocol standards in this document and only the call format and operations for the command/event/query
API of each service are described.

Examples of Description Document

The XML document below shows an example of the description which can be obtained by search results of remote
control key input and remote control service for a service in a Host.

 | 15

For the description obtained as a search result by using udap:rootservice, the name and the apiList of an additional
service can be added in the example below. In other words, the description obtained as the search result by using
udap:rootservice describes the whole service list described in LG UDAP 2.0 Service Profiles. The related example

is provided on the next page.

<xml version="1.0" encoding="utf-8">

The example of an actual XML document of the description obtained as the search result using udap:rootservice is as
follows.

 | 16

The following is the description of elements and attributes comprising the XML document in the above example.

[Table] Elements of description document

XML element XML attribute Description

envelope - Start part of the description XML document

device - Descriptions of the information on a Host device

deviceType -
Device type of the Host device. For LG Smart TV, the value is represented
as “TV”.

modelName -
Model name of a Host. Represented as "inch-model name_suffix". For
example, 47-LM6500_32.

friendlyName -
User-friendly name of a modelName. For LG Smart TV, the value follows the
TV setting value. If no value is set in TV, it is represented as default value,
“LG Smart TV”.

manufacturer - Manufacturer of a Host device. Fixed as LG Electronics.

uuid -
Stands for Universal Unique IDentifier of a Host device. Each Host device in
the same local network has a different unique value.

port -
Communication port information regarding a Host device. A Controller sends
a command/event/query to a Host using this port.

serviceList - Start part of the description for the service list of a Host device

 | 17

XML element XML attribute Description

service name
Start part of the description for one of the services of a Host. The service
name is described in the name attribute.

apiList -
Start part of the description for the command/event/query list that is
supported by one of the services of a Host

api type
Start part of the description for a command, event or query list that is
supported by one of the services of a Host. The value of the type attribute is
one of command, event or query.

name -

Describes the actual name of the supported API for command, event or
query that is supported by one of the services of a Host. For more
information about the actual call format of each API, refer to LG UDAP 2.0
Service Profiles.

Utilization of Description Document

A Controller uses the description document to get the information that can be used to access a Host after discovery
as well as the information that can be displayed on a user's screen. The figure below is an example of displaying the
Discovery result on the user's screen of a Controller using the model name of Description.

[Figure] Display of the discovery screen of a Controller

Generally, even for Hosts that support the same service, the supported API list may be different depending on the
detail model of a Host. In this case, the description document provides the list of the API name of command, event, or
query that is supported by the service to guarantee the operational compatibility between a Controller and a Host.
The Controller must check the API list provided in the description and also check whether the function that
the Controller wants to call is supported by the Host. After that, by calling an API that is actually supported by the

Host, prevent any malfunction or error. When a Host receives a call request from a Controller for an API that is not
supported by the Host, it sends back an error response to the Controller.

The figure below displays the process that a Controller uses to check the API list in the description and communicate
with a Host in diagram form. In addition, a Controller must complete the pairing process described in the next
chapter to call a Host API.

 | 18

[Figure] Diagram of checking API support by a Controller

Pairing

This chapter describes the pairing process. Pairing is a kind of authorization process that allows only authorized
Controllers to access the Host.

A Controller can call the command/event/query API of a Host only when it receives a success response from the Host
by entering a pairing key displayed on the screen of a Host to access, and sending it to the Host.

Pairing uses the IP address and port number that are obtained from Discovery and Description to send the
pairing key using HTTP/1.1 POST, and the following protocol stacks are used.

[Figure] Pairing protocol stack

Pairing provides the APIs described in the following sections. The path used for POST is /udap/api/pairing and the
text/xml; charset=utf-8 is used for Content-Type. In addition, a Controller must include UDAP/2.0 in the User-
Agent header of POST.

The XML format used for pairing is as follows. The black font is a fixed value and the red Italic font can vary per API.

 | 19

Note

When building XML, avoid inserting the line change character (“\r”, “\n”) if possible. This reduces data transmission
size by excluding unnecessary characters and speeds up the operation at the XML parser of a Host.

This chapter includes the following sections.
 Request Pairing Key (Controller >> Host)
 Request Pairing (Controller >> Host)
 End Pairing (Controller <<->> Host)
 IP Address Change Notification (Controller <<->> Host)
 Pairing Scenario

Request Pairing Key (Controller >> Host)

A Controller uses the following XML format when it requests a pairing key to a Host as HTTP POST.

A Host that receives a showKey request displays a 6-digit pairing key on its screen as shown below. The 6-digit
pairing key is displayed on the screen with a space after every 2 digits for better readability. When a Controller
requests the pairing, it must send the 6-digit string with no spaces. For example, in the figure below, the pairing key
value that is forwarded by its actual pairing request is 513296.

[Figure] Host screen after pairing key request

The showKey checks any request errors and sends a response code to the Controller as shown in the table below:

[Table] Response code of showKey request

Response Code Description

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="pairing">

 <name>showKey</name>

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="pairing">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- additional parameters are listed if available -->

 </api>

</envelope>

 | 20

Response Code Description

200
HTTP/1.1 200 OK
The showKey request is successful.

400
HTTP/1.1 400 Bad Request
The showKey request is transmitted in an incorrect format.

500
HTTP/1.1 500 Internal Server Error
During showKey request handling, an internal handling error occurs in a Host.

The actual request of a Controller and the response of a Host using showKey are as follows. Although the actual
request XML of a Controller does not have the new line character, it is included for better readability of the XML
transmitted from the request in this document.

POST /udap/api/pairing HTTP/1.1

Host: 192.168.10.51:8080

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: 105

Connection: Close

User-Agent: Linux/2.6.18 UDAP/2.0 CentOS/5.8

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="pairing">

<name>showKey</name>

</api>

</envelope>

HTTP/1.1 200 OK

Server: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Tue Jul 17 02:02:39 2012 GMT

Connection: Close

Content-Length: 0

Request Pairing (Controller >> Host)

A Controller uses the following XML format when it requests pairing to a Host as HTTP POST.

A Host that receives the hello request checks the validity of a pairing key and sends a response code for a handling
result to the Controller as per the table below:

[Table] Response code of hello request

Response Code Description

200
HTTP/1.1 200 OK
The hello request is successful.

400
HTTP/1.1 400 Bad Request
The hello request is transmitted in an incorrect format.

401
HTTP/1.1 401 Unauthorized
The pairing key value is not valid.

500
HTTP/1.1 500 Internal Server Error
During hello request handling, an internal handling error occurs in a Host.

503
HTTP/1.1 503 Service Unavailable
Maximum number of Controllers that a Host can accommodate has been exceeded.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="pairing">

 <name>hello</name>

 <value>pairing key</value>

 <port>port of the Controller that gets event from host</port>

 </api>

</envelope>

 | 21

If the pairing requested by a Controller is successful, the pop-up window displayed on a Host screen disappears.
Otherwise, the pop-up window showing the pairing key displays on the Host screen for another 60 seconds. For
better readability of XML, new line characters are included in this document.

POST /udap/api/pairing HTTP/1.1

Host: 192.168.10.51:8080

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: 141

Connection: Close

User-Agent: Linux/2.6.18 UDAP/2.0 CentOS/5.8

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="pairing">

<name>hello</name>

<value>166350</value>

<port>8080</port>

</api>

</envelope>

HTTP/1.1 200 OK

Server: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Tue Jul 17 04:17:37 2012 GMT

Connection: Close

Content-Length: 0

End Pairing (Controller <<->> Host)

A Controller must send a byebye request to the Host to end the pairing when it finishes the communication using
command/event/query with a Host and terminates its application. Also, a Host sends a byebye request to all the
Controllers with which it is communicating when it cannot accept a request from a Controller (for example, when it is
turned off by a default TV remote Controller). The diagram below describes how the pairing is terminated by a
Controller and a Host.

[Figure] End pairing

 | 22

Note

When a Host sends a byebye request to a Controller, it does so by using the port number that the Controller has
configured in its pairing request XML.

When either a Controller or a Host wants to end pairing, it sends a byebye request as HTTP POST using the
following XML format.

A Controller or a Host that receives the byebye request checks its validity and sends a response code for a handling
result to the Controller as the table below:

[Table] Response code of byebye request

Response Code Description

200
HTTP/1.1 200 OK
The byebye request is successful.

400
HTTP/1.1 400 Bad Request
The byebye request is transmitted in an incorrect format.

401
HTTP/1.1 401 Unauthorized
A response code defined only in a Host.
The byebye request is transmitted from a Controller that is not paired.

The actual request and response using the byebye request is as follows. For better readability of XML, new line
characters are included in this document.

POST /udap/api/pairing HTTP/1.1

Host: 192.168.10.51:8080

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: 121

Connection: Close

User-Agent: Linux/2.6.18 UDAP/2.0 CentOS/5.8

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="pairing">

<name>byebye</name>

<port>8080</port>

</api>

</envelope>

HTTP/1.1 200 OK

Server: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Tue Jul 17 05:03:31 2012 GMT

Connection: Close

Content-Length: 0

IP Address Change Notification (Controller <<->> Host)

If a Controller and a Host are connected in the DHCP environment, the initially-allocated IP address can be changed
if it arrives within the DHCP lease time. If the IP address of a Host is changed, a Controller cannot request
command/event/query to the Host anymore. If the IP address of a Controller is changed, the Host cannot send an

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="pairing">

 <name>byebye</name>

 <port>port that receives event</port>

 </api>

</envelope>

 | 23

event to the Controller. To cope with this situation, the pairing provides an API that can be used to notify the
counterpart of the details of the IP address change when their IP addresses are changed.
To notify the IP address change to each other, they send the information as HTTP POST using the following XML
format:

The figure below displays the process of the IP address change notification using the update request in diagram form.

[Figure] IP address change notification

A Host or a Controller that receives the update request checks its validity, updates the communication IP address
information and sends a response code for a handling result as per the table below:

[Table] Response code of update request

Response Code Description

200
HTTP/1.1 200 OK
The update request is successful.

400
HTTP/1.1 400 Bad Request
The update request is transmitted in an incorrect format.

401
HTTP/1.1 401 Unauthorized
A response code defined only in a Host.
The update request is transmitted from a Controller that is not paired

The actual request and response using the update request is as follows. For better readability of XML, new line
characters are included in this document.

POST /udap/api/pairing HTTP/1.1

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="pairing">

 <name>update</name>

 <value>IP address assigned newly</value>

 <expire> expired IP address </expire>

 </api>

</envelope>

 | 24

Host: 192.168.10.51:8080

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: 162

Connection: Close

User-Agent: Linux/2.6.18 UDAP/2.0 CentOS/5.8

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="pairing">

<name>update</name>

<value>192.168.10.51</value>

<expire>192.168.10.50</expire>

</api>

</envelope>

HTTP/1.1 200 OK

Server: Linux/2.6.18-308.4.1.el5 UDAP/2.0 LGSmartTV_33/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Tue Jul 17 05:03:31 2012 GMT

Connection: Close

Pairing Scenario

A user may find it inconvenient if a Controller needs to receive the pairing key displayed on the screen of a Host
whenever it needs to access the Host. To resolve this issue, the following pairing scenario is proposed.

1) When a Controller accesses a Host for the first time, it displays a pairing key on the screen of the Host using the

showKey API.

2) When the pairing request of the Controller is successful, the UUID value obtained from the Description and the

pairing key of the Host are paired and saved to local storage on the Controller as follows: The UUID and the pairing
key value of a Host device are different from those of another Host device and the values can not be changed once
they have been created.

[Table] Local storage of a Controller

UUID Pairing key

UUID #1 Pairing key #1

UUID #2 Pairing key #2

… …

3) If the pairing key corresponding to the UUID is stored on the local storage of a Controller when the Controller

searches for a Host and get the description, the Controller skips the showKey process and completes pairing by
reading the stored pairing key value and directly entering into the hello request.

Whether or not to follow the proposed pairing scenario above is up to the Controller application developer who
implements the Controller application. However, it is recommended to implement the scenario for the
convenience of users, if possible.

Command, Event, Query

This chapter provides a description of command, event and query.

When the pairing request described in Pairing is successful, a Controller can request a command/event/query to a

Host and receive an event from the Host. To do this, a Controller can perform an HTTP request to access a Host
using the IP address and the port number obtained from Discovery and Description. A Host sends an event to a
Controller using the port number specified in the XML that the Controller sends in its pairing request.

 | 25

Each one of command, event, or query is based on XML and performs the following function.

[Table] Roles of Command, event, and query

Category Role

Command A Controller sends a specific command to a Host to control the Host.

Event
A Controller or a Host sends an event to each other when their status is changed or a
specific event occurs.

Query A Controller uses a query to get specific data from a Host.

The protocol stack used by a command, event or query is as follows:

[Figure] Protocol stacks of command, event, and query

For details of API call methods on each service of a command, event, or query, refer to LG UDAP 2.0 Service
Profiles.

Note

When building XML, avoid inserting the line change character (“\r”, “\n”) if possible. This reduces data transmission
size by excluding unnecessary characters and speeds up the operation at the XML parser of a Host.

This chapter includes the following sections.
 Common Rules
 Command (Controller >> Host)
 Event (Controller <<->> Host)
 Query (Controller >> Host)

Common Rules

The command, event and query have the following common rules.

1) The character encoding used for communication is UTF-8.

2) If an XML data value has a special character, encode the character before transmission as shown in the following

table:

[Table] Encoding XML special characters

Special Character Encoding Value

\n (new line character)

\ '

“ "

 <

 | 26

Special Character Encoding Value

> >

& &

For example, the string <NEWS & 24> must be encoded as <NEWS & 24> to include in XML document.

3) A Controller and a Host use the following format of USER-AGENT header.

User-Agent: OS/version UDAP/2.0 product/version

4) The HTTP server of a Host supports the HTTP persistent connection as well as general HTTP communication

(Connection: Close). Therefore, it can handle continuous requests of a command, event or query at a high speed.
The process for a Controller to handle each communication is as follows:

[General HTTP communication]

1. Connect to a target server.
2. Set the value of a connection header to Close and send a request such as HTTP GET or HTTP POST, etc.
3. Receive the response of a server for the request.
4. Close the connection to the server.

[HTTP persistent connection]

1. Connect to a target server.
2. Set the value of a connection header to Keep-Alive and send a request such as HTTP GET or HTTP POST, etc.
3. Receive the response from a server for the request and check if the response header of server includes

"Connection: Keep-Alive" and "Keep-Alive: timeout=timeout_value; max=max_timeout_value".
4. If the server response includes two headers described in 3, the connection to the server can be maintained during

the set timeout (in seconds) without disconnection.

• The connection to the server can be maintained if the value of "current time - recent access time" is the same or

smaller than timeout_value.

• Even when the value of "current time - recent access time" is the same or smaller than timeout_value, the

connection to the server is not valid if the max_timeout_value has been reached.
5. If the value of "current time - recent access time" is greater than timeout_value or the max_timeout_value has been

reached, the connection to the server is closed.

The figure below displays an HTTP persistent connection in diagram form.

 | 27

[Figure] Conceptual diagram of an HTTP persistent connection

The following examples show two types of HTTP communication. The equivalent rules are also applied to Event,
Query.

Command (Controller >> Host)

A command complies with all the Common Rules and is sent as HTTP POST using the following path.

A command is used only when a Controller controls a Host. There is no command sent from a Host. The command's
call is uni-directional between a Controller and a Host as shown below:

[Figure] Call direction of a command

The XML format used in a command uses the following common format regardless of service type. The black font is a
fixed value and the red Italic font can vary per command. For details of command call methods on each service, refer
to LG UDAP 2.0 Service Profiles.

http://target_ip:port/udap/api/command

 | 28

To increase the response speed for a command execution result, UDAP uses an HTTP response code to notify the
Controller of the command execution result. It does not include a separate HTTP response body. The value of a
response code that can be used to display a command execution result as an HTTP response code is shown in the
following table:

[Table] Response code of a command

Response code Description

200
HTTP/1.1 200 OK
The command execution is successful.

400

HTTP/1.1 400 Bad Request
The command format is not valid or it has an incorrect value.

401
HTTP/1.1 401 Unauthorized
A command is sent when a Host and a Controller are not paired.

404
HTTP/1.1 404 Not Found
The POST path of a command is incorrect.

500
HTTP/1.1 500 Internal Server Error
The command execution has failed.

The format of the request and the response using a command is as follows: For better readability of XML, new line
characters are included in this document. For a continuous operation (for example, mouse movement), a command
can be sent out quickly by using an HTTP persistent connection.

Event (Controller <<->> Host)

An event complies with all the common rules in Common Rules and is sent as HTTP POST using the following path.

A Controller or a Host sends an event to each other when their status is changed or a specific event occurs. An event

http://target_ip:port/udap/api/event

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- additional parameters are listed if available -->

 </api>

</envelope>

POST /udap/api/command HTTP/1.1

Host: host_ip:port

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: byte length of Command XML

Connection: Close

User-Agent: OS/version UDAP/2.0 product/version

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="command">

<name>apiName</name>

<paramName>param value</paramName>

<!-- additional parameters are listed if available -->

</api>

</envelope>

HTTP/1.1 200 OK

Server: OS/version UDAP/2.0 product/version

Cache-Control: no-store, no-cache, must-revalidate

Date: Time when the host response is occurred

Connection: Close

Content-Length: 0

 | 29

can be transmitted in the following cases.

1) A Controller sends an event to a Host when its status has changed or a specific event occurs.
2) A Host sends an event to a Controller with which it is paired when the Host's status has changed or a specific

event occurs.
3) A Controller or a Host sends an event to each other when their status has changed or a specific event occurs.

An event is bi-directional between a Controller and a Host, Controller --> Host, Host --> Controller, Controller <-->
Host, as shown below. If an event is received to a Controller from a Host which is not requested by the Controller, the
event is ignored.

[Figure] Transmission direction of event

The XML format used in an event uses the following common format regardless of service type. The black font is a
fixed value and the red Italic font can vary per event. For details of event transmission methods on each service,
refer to LG UDAP 2.0 Service Profiles.

To increase the response speed for an event processing result, UDAP uses an HTTP response code to notify the
counterpart of the event processing result. It does not include a separate HTTP response body. The value of a
response code that can be used to display an event processing result as an HTTP response code is shown in the
following table:

[Table] Response code of an event

Response code Description

200
HTTP/1.1 200 OK
The event execution is successful.

400
HTTP/1.1 400 Bad Request
The event format is not valid or it has an incorrect value.

401
HTTP/1.1 401 Unauthorized
An event is sent when a Host and a Controller are not paired.

404
HTTP/1.1 404 Not Found
The POST path of an event is incorrect.

500
HTTP/1.1 500 Internal Server Error
Event Execution Failure

The request and the response formats of an event are as follows. For better readability of XML, new line characters

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- additional parameters are listed if available -->

 </api>

</envelope>

 | 30

are included in this document. When the events are generated continuously, it can send the events quickly using an
HTTP persistent connection.

Note

Some services may use a command or an event in the JSON format rather than the XML format. This kind of
service does not use the POST path described above. Instead, it uses a POST path that the service defined
separately. Refer to the App To App services in LG UDAP 2.0 Service Profiles.

Query (Controller >> Host)

A query complies with all the common rules in Common Rules and a Controller requests information to a Host using

HTTP GET. The query's call is uni-directional between a Controller and a Host as shown below:

[Figure] Call direction of a query

Query includes URL encoding rule in addition to the common rules described in Common Rules. This rule is used in
internet standard HTTP/1.1 and not defined in UDAP separately. Refer to Annex A URL Encoding Reference for
detailed information.(the string <NEWS & 24> is encoded as %3cNEWS%20%26%2024%3e)

The URL format used in a query uses the following common format regardless of service type. The black font is a
fixed value and the red Italic font can vary per event.

POST /udap/api/command HTTP/1.1

Host: host_ip:port

Cache-Control: no-cache

Content-Type: text/xml; charset=utf-8

Content-Length: Byte length for Command XML

Connection: Close

User-Agent: OS/version UDAP/2.0 product/version

<?xml version="1.0" encoding="utf-8"?>

<envelope>

<api type="event">

<name>apiName</name>

<paramName>param value</paramName>

<!-- additional parameters are listed if available -->

</api>

</envelope>

HTTP/1.1 200 OK

Server: OS/version UDAP/2.0 product/version

Cache-Control: no-store, no-cache, must-revalidate

Date: Time when the host response is occurred

Connection: Close

Content-Length: 0

 | 31

In the above URL, the paramName and its corresponding param_value can vary per query type. There is a query that
can be called just with apiName without the paramName and param_value. For details of query call methods on
each service, refer to LG UDAP 2.0 Service Profiles.

When a Controller requests a query to a Host, the Host analyzes the API name and parameter of the query, collects
data for the request, and creates and returns a response to the Controller in the common XML format. For a query
call, the possible value of a response code is as follows:

[Table] Response codes of a query

Response code Description

200
HTTP/1.1 200 OK
The query execution is successful.

401
HTTP/1.1 401 Unauthorized
A query is sent when a Host and a Controller are not paired.

404
HTTP/1.1 404 Not Found
The request path of a query is incorrect.

500
HTTP/1.1 500 Internal Server Error
Query execution failure

The XML format that is delivered to a Controller as the response to a query uses the following common format
regardless of service type and the Content-Type is "text/xml; charset=utf-8". UDAP uses the following concept to
generalize the response XML format of a query.

1) A dataset can have several values.
2) A dataset list can have several datasets.
3) The total query response data can have several dataset lists.

 To help you understand the above concept, let's assume we group the students in one class of a school. There are
male and female students in a class and they have their own information such as name, age, and address. Here, if
we assume one dataset represents one student's information including name, age, and address, a dataset list has
these datasets for each gender (male and female) and it means that all the students in the class are included in the
two dataset lists. For a better understanding, the diagram for this concept is as follows:

[Figure] Example of response XML configuration of a query

Based on this, the response XML format of a query is defined as follows. "data" means dataset, "dataList" means

http://target_ip:port/udap/api/data?target=apiName¶mName1=URL_Encode(param_value1)¶mNa
me2=URL_Encode(param_value2)

 | 32

dataset list, and the name attribute of dataList means the name of dataList. (Value corresponding to "Male" and
"Female" in the above diagram)

In the below XML format, the black font is a fixed value and the red Italic font can vary per query. The Controller
receives the value by decoding because the values in the below XML format can be sent with URL-encoded. For
details of the response XML format of a query for each service, refer to LG UDAP 2.0 Service Profiles.

Response XML Elements of a Query

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <device>

 <dataList name="data_list_name">

 <data>

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <!-- additional data values are listed if available -->

 </data>

 <data>

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <!-- additional data values are listed if available -->

 </data>

 <data>

 <valueName>value</valueName> <!-- value can be URL-encoded -->

 <!-- additional data values are listed if available -->

 </data>

 </dataList>

 <dataList name="data_list_name">

 <!-- additional data is listed if available -->

 </dataList>

 <!-- additional data lists are listed if available -->

</envelope>

Note

Some services may use a command or an event in the JSON format rather than the XML format. This kind of
service does not use the POST path described above. Instead, it uses a POST path that the service defined
separately. Refer to the App To App service in LG UDAP 2.0 Service Profiles.

Examples of Controller Application Operation

This chapter displays the examples of a Controller application communicating with a Host at each step of UDAP in
diagram form.

 | 33

[Figure] Overall operation scenario of a Controller

Annex A URL Encoding Reference

The following table shows URL-encoding value for each ASCII character. The URL-encoding is needed because
HTTP URL format supposes only ASCII value by default. Since the internet has been getting globalized, URL-
encoding with hexadecimal was suggested from W3C for representing any character in HTTP URL, which is not
representable as ASCII value, and now it is used as internet standard.
For example, & is represented as %26 and white space is represented as %20, therefore, the string NEWS & 24 is
encoded as NEWS%20%26%2024

[Table] URL encoding value

ASCII character URL-encoding

space %20

! %21

" %22

%23

$ %24

% %25

& %26

 | 34

ASCII character URL-encoding

' %27

(%28

) %29

* %2A

+ %2B

, %2C

- %2D

. %2E

/ %2F

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

[%5B

\ %5C

] %5D

^ %5E

_ %5F

` %60

{ %7B

| %7C

} %7D

~ %7E

` %80

‚ %82

ƒ %83

„ %84

… %85

† %86

 | 35

ASCII character URL-encoding

‡ %87

ˆ %88

‰ %89

Š %8A

‹ %8B

Œ %8C

Ž %8E

‘ %91

’ %92

“ %93

” %94

• %95

– %96

— %97

˜ %98

™ %99

š %9A

› %9B

œ %9C

ž %9E

Ÿ %9F

¡ %A1

¢ %A2

£ %A3

¤ %A4

¥ %A5

¦ %A6

§ %A7

 ̈ %A8

© %A9

ª %AA

« %AB

 | 36

ASCII character URL-encoding

¬ %AC

® %AE

¯ %AF

° %B0

± %B1

² %B2

³ %B3

 ́ %B4

µ %B5

¶ %B6

· %B7

 ̧ %B8

¹ %B9

º %BA

» %BB

¼ %BC

½ %BD

¾ %BE

¿ %BF

À %C0

Á %C1

Â %C2

Ã %C3

Ä %C4

Å %C5

Æ %C6

Ç %C7

È %C8

É %C9

Ê %CA

Ë %CB

Ì %CC

 | 37

ASCII character URL-encoding

Í %CD

Î %CE

Ï %CF

Ð %D0

Ñ %D1

Ò %D2

Ó %D3

Ô %D4

Õ %D5

Ö %D6

× %D7

Ø %D8

Ù %D9

Ú %DA

Û %DB

Ü %DC

Ý %DD

Þ %DE

ß %DF

à %E0

á %E1

â %E2

ã %E3

ä %E4

å %E5

æ %E6

ç %E7

è %E8

é %E9

ê %EA

ë %EB

ì %EC

 | 38

ASCII character URL-encoding

í %ED

î %EE

ï %EF

ð %F0

ñ %F1

ò %F2

ó %F3

ô %F4

õ %F5

ö %F6

÷ %F7

ø %F8

ù %F9

ú %FA

û %FB

ü %FC

ý %FD

þ %FE

ÿ %FF

 | 39

LG UDAP 2.0 Service Profiles

This document describes the actual operation of the service utilizing the Universal Discovery & Access Protocol
(UDAP) and the details of the API.

 Service Profile Overview
 Remote Controller Service (netrcu)
 Text Input Service (smartText)
 Mobile Home Service (mobilehome)
 App To App Service (AppToApp)
 Annex A Table of virtual key codes on remote Controller

Service Profile Overview

This chapter provides the overview of the service profiles implemented using the UDAP.

This chapter includes the following sections.
 Types and Roles of Service Profiles
 Descriptions of All Service Profiles

Types and Roles of Service Profiles

The UDAP implements various applications which operate on the Host device, based on the common base protocol
which is described in LG UDAP 2.0 Protocol Specification.

The Host (LG Smart TV) provides access to the service profiles listed in the table below and functions as well.

[Table] All service profiles

Service profile Function and role

Remote Controller Service (netrcu)
Provides query for control functions of the Host remote Controller and the magic
Controller (command, event) and the TV information (e.g., channels list, current
channel info, …).

Text Input Service (smartText)
When the web browser on the Host or a user app is in the UI mode for text input,
this service allows the Controller to send text input to the Host or notify that text
input is available.

Mobile Home Service (mobilehome)
Fetches the list of currently installed apps from the Host and provides app
functions, such as remote run and end, and other control functions.

App To App Service (AppToApp)
Helps a specific app on the Host and a specific app on the Controller are
intimately linked and allows the developer to implement a specialized application
of functions of a specific app.

Note

Since events of UDAP 2.0 service profiles dynamically occur according to the operation status of the Host, the
Controller must be able to ignore any incoming events from the Host which are not supposed to be processed by it.
If an application is written for the Controller by mingling APIs of multiple service profiles, a search should be
performed with udap:rootservice to obtain descriptions of all service profiles.

Descriptions of All Service Profiles

As described in LG UDAP 2.0 Protocol Specification, the descriptions of all service profiles supported by LG Smart
TV can be obtained by entering udap:rootservice as the ST of the SSDP.

 | 40

Remote Controller Service (netrcu)

This chapter describes on Remote Controller service that provides query for control functions of the Host remote

 | 41

Controller and the magic Controller (command, event) and the TV information (e.g., channels list, current channel info,
…).

This chapter includes the following sections.
 Discovery & Description
 Command (Controller >> Host)
 Event (Controller <<->> Host)
 Query (Controller >> Host)
 Usage Scenario

Discovery & Description

The ST value for searching the Remote Controller service is as follows.

If searching the SSDP with the ST value above, the descriptions are returned as below. The device section of the
description XML contains the model name and the UUID value of the actual Host.

<?xml version="1.0" encoding="utf-8"?>

Note

Since udap:rootservice searchs all services existing on Host, it can also be used by Remote Controller service and
descriptions in Descriptions of All Service Profiles can be obtained.

urn:schemas-udap:service:netrcu:1

 | 42

Command (Controller >> Host)

Commands of the Remote Controller service complies with all common rules in the LG UDAP 2.0 Protocol

Specification and are sent in the HTTP POST method using the path below.

The XML format used for the command is the common format defined in LG UDAP 2.0 Protocol Specification.

Black fonts indicate fixed values, and red italic fonts indicate values variable depending on commands.

Upon successful execution of a command, HTTP/1.1 200 OK is returned. For details of response codes, refer to LG
UDAP 2.0 Protocol Specification.

Commands are as follows:
 HandleKeyInput
 HandleTouchMove
 HandleTouchClick
 HandleTouchWheel
 HandleChannelChange

HandleKeyInput

This command transfers the virtual remote Controller key code value of the Host. After receiving this virtual remote
Controller key code value, the Host converts the value into an actual Host key code and performs the key input action.

[Table] Parameters of HandleKeyInput

Parameter Description

Value
Name of the XML element to which the virtual key code value of the Host is assigned.
For details of virtual remote Controller key code values, see the virtual key code table in Annex A.

[Table] Actions of HandleKeyInput

Item Description

Persistent connection status

In case of sending a single key code value to the Host, use Connection: Close.
To send multiple values continuously and quickly to the Host, enable the
persistent connection by using Connection: Keep-Alive. For details of persistent
connection, refer to LG UDAP 2.0 Protocol Specification.

Related events
If the Host successfully processes HandleKeyInput, the event below is sent to
the Controller.
ChannelChanged event of the netrcu service.

HandleTouchMove

This command controls the movement of the magic remote Controller cursor of the Host on the screen. After
receiving this, the Host moves the mouse cursor on the screen according to the X and Y coordinate values specified
by the Controller.

http://target_ip:port/udap/api/command

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>HandleKeyInput</name>

 <value>Value key code of remote Controller</value>

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- Additional parameters are listed if available -->

 </api>

</envelope>

 | 43

[Table] Parameters of HandleTouchMove

Parameter Description

x
Displacement value for the X coordinate. Using the current X coordinate as a reference, a
negative value denotes the movement to the left and a positive value denotes the movement to
the right.

y
Displacement value for the Y coordinate. Using the current Y coordinate as a reference, a
negative value denotes an upward movement and a positive value denotes a downward
movement.

For details of mouse coordinates movement, see the diagram below.

[Table] Actions of HandleTouchMove

Item Description

Persistent connection status
Since the action takes places very quickly, enable the persistent connection by
using Connection: Keep-Alive. For details of persistent connection, refer to LG
UDAP 2.0 Protocol Specification.

Related events
Before sending HandleTouchMove, send the CursorVisible event to the Host so
that the mouse cursor appears on the Host screen first.
CursorVisible event of the netrcu service.

[Figure] Calculation of Displacement Value of Mouse Coordinates

HandleTouchClick

The HandleTouchClick event sends the mouse click command while the magic remote Controller cursor of the Host

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>HandleTouchMove</name>

 <x> Displacement value of X coordinate </x>

 <y> Displacement value of Y coordinate </y>

 </api>

</envelope>

 | 44

is stationary at a specific position on the screen. After receiving this, the Host generates the click command at its
current screen position.

 HandleTouchClick has no additional parameters.

[Table] Actions of HandleTouchClick

Item Description

Persistent connection status

Use Connection: Close when sending a single click to the Host. To send
multiple clicks continuously and quickly to the Host, enable the persistent
connection by using Connection: Keep-Alive. For details of persistent
connection, refer to LG UDAP 2.0 Protocol Specification.

Related events

Before sending HandleTouchClick, send the CursorVisible event to the Host
so that the mouse cursor appears on the Host screen first.
After receiving HandleTouchClick, if the Host is not currently showing the
cursor, the Host only shows the cursor on its screen and performs no click
action.
CursorVisible event of the netrcu service.

HandleTouchWheel

The HandleTouchWheel event sends the command to perform the wheel function of the magic remote Controller of
the Host. After receiving this command, the Host generates the upward/download wheel movement at its current
screen position. When on any other screen with scrolls (for example, a web browser screen), the action is performed
in the same way as the mouse wheel on the PC. When the wheel action is sent on the TV playback screen, the Host
triggers the channel up/down action.

[Table] Parameters of HandleTouchWheel

Parameter Description

value

This specifies upward or downward direction of the scroll movement. The
following two values are available.

up: Scroll up
down: Scroll down

[Table] Acrions of HandleTouchWheel

Action Description

Persistent connection status

Use Connection: Close when sending a wheel action to the Host. To send
multiple wheel actions continuously and quickly to the Host, enable the
persistent connection by using Connection: Keep-Alive. For details of
persistent connection, refer to LG UDAP 2.0 Protocol Specification.

Related events
Before sending HandleTouchWheek, send the CursorVisible event to the Host
so that the mouse cursor appears on the Host screen first.
CursorVisible event of the netrcu service.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>HandleTouchWheel</name>

 <value> Up/down scrolling direction </value>
 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>HandleTouchClick</name>

 </api>

</envelope>

 | 45

HandleChannelChange

This command directly changes the channel by using the TV channels list information of the Host instead of using the
channel up/down keys on the remote Controller. As the parameters used in HandleChannelChange make use of the
channels list information, see the channels list for details.

[Table] Parameters of HandleChannelChange

Parameter Description

major
This is the major channel number which can be obtained from the channels list
information.

minor
This is the minor channel number which can be obtained from the channels list
information.

sourceIndex
This is the channel source index which can be obtained from the channels list
information.

physicalNum
This is the physical channel number which can be obtained from the channels list
information.

For example, in case of the 11-1 MBC DTV channel, the major number is 11 and the minor number is 1. Its source
index and physical number are determined by the values in the channels list information of the Host.

[Table] Actions of HandleChannelChange

Item Description

Persistent connection status

Use Connection: Close when sending a single channel change to the Host. To send
multiple channel changes continuously and quickly to the Host, enable the persistent
connection by using Connection: Keep-Alive.
For details of persistent connection, refer to LG UDAP 2.0 Protocol Specification.

Related events and queries

Channels list query of the netrcu service: HandleChannelChange has the

parameter information to be used.
ChannelChanged event of the netrcu service: Sent to the Controller when the

channel change is successful.

Event (Controller <<->> Host)

Events of the Remote Controller service complies with all common rules in the LG UDAP 2.0 Protocol Specification

and are sent in the HTTP POST method using the path below.

The XML format used for the event is the common format defined in the LG UDAP 2.0 Protocol Specification. Black

fonts indicate fixed values, and red italic fonts indicate values variable depending on events.

Upon successful handling of an event, HTTP/1.1 200 OK is returned. For details of response codes, refer to LG

http://target_ip:port/udap/api/event

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- Additional parameters are listed if available -->

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>HandleChannelChange</name>

 <major>major number of the channel</major>

 <minor>minor number of the channel</minor>

 <sourceIndex>source index of the channel</sourceIndex>

 <physicalNum>physical number of the channel</physicalNum>

 </api>

</envelope>

 | 46

UDAP 2.0 Protocol Specification.

Events are as follows:
 CursorVisible (Controller <<->> Host)
 ChannelChanged (Controller << Host)
 CallStateChanged (Controller >> Host)
 DragMode (Controller >> Host)
 3DMode (Controller << Host)

CursorVisible (Controller <<->> Host)

This event notifies the Host that the Controller is ready to use the mouse cursor. Reversely, the event also notifies the
Controller that the mouse cursor of the magic remote Controller has become available for use.

When the Controller enters the UI mode for using the mouse cursor, it notifies the Host of it so that the mouse cursor
is displayed on the Host. Reversely, when notified by the Host that the magic remote Controller mouse cursor is
available for use, the Controller switches into the UI mode for using the mouse cursor and then sends the
CursorVisible event to the Host so that the Host displays the magic mouse cursor. The diagram below shows an
overview of this operation.

[Table] Parameters of CursorVisible

Parameter Description

value
Shows or hides the mouse cursor. The following two values are available.
true: Show mouse cursor
false: Hide mouse cursor

mode
This element is for showing the mode which displays the mouse cursor and currently
not in use. It is fixed as auto.

[Table] Actions of CursorVisible

Item Description

Persistent connection status Since this event does not occur frequently, use Connection: Close.

Related commands None

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>CursorVisible</name>

 <value>true or false</value>

 <mode>auto</mode>

 </api>

</envelope>

 | 47

[Figure] Making Mouse Cursor Visible

ChannelChanged (Controller << Host)

When a channel change related command of the Controller is successfully processed by the Host, the changed
channel details are sent to the Controller.

When the Controller enters the UI mode for using the mouse cursor, it notifies the Host of it so that the mouse cursor
is displayed on the Host. Reversely, when notified by the Host that the magic remote Controller mouse cursor is
available for use, the Controller switches into the UI mode for using the mouse cursor and then sends the
CursorVisible event to the Host so that the Host displays the magic mouse cursor. The diagram below shows an
overview of this operation.

[Table] Parameters of ChannelChanged

Parameter Description

labelName Label name of the current input source

inputSourceType
Type of the current input source. The following values are available.
0: TV, 1: External input, 2: RGB

inputSourceName

Name of the current input source. The following values are available.
Antenna: Input via the TV antenna
HDMI: HDMI input. The actual value has the label number for the HDMI input

port of the TV at the end (for example, HDMI1, HDMI2, …).
Component: Component input. The actual value has the label number for the

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>ChannelChanged</name>

 <labelName>label name of the current source</labelName>

 <inputSourceType>source type</inputSourceType>

 <inputSourceName>source name</inputSourceName>

 <audioCh>audio channel or not</audioCh>

 <progName>program name</progName>

 <chtype>channel transferring type</chtype>

 <major>physical major number of the channel</major>

 <minor> physical minor number of the channel </minor>

 <sourceIndex>source index of the channel</sourceIndex>

 <physicalNum>physical number of the channel</physicalNum>

 <chname>channel name</chname>

 </api>

</envelope>

 | 48

Parameter Description

component input port of the TV at the end (for example, Component1,
Component2, …)
Composite: Composite input. The actual value has the label number for the

composite input port of the TV at the end (for example, Composite1,
Composite2, …)
RGB: RGB-PC input

audioCh

Shows whether the current channel is an audio channel. The following values
are available.
0: Normal channel
1: Audio channel

progName Program name currently on the air on the current channel

chtype

Type of the current channel. The following values are available.
satellite: Satelite broadcast
cable: Cable broadcast
terrestrial: Terrestial braodcast

major Physical major number of the current channel

minor Physical minor number of the current channel

sourceIndex Source index of the current channel

physicalNum Physical number of the current channel

chname Name of the current channel

[Table] Actions of ChannelChanged

Item Description

Persistent connection status Transferred to the Controller with Connection: Close.

Related commands
This event is generated when changing channels. For details, see the
descriptions of HandleKeyInput and HandleChannelChange.

[Figure] Generation of ChannelChanged Event

CallStateChanged (Controller >> Host)

If the Controller is a smartphone, there may be an incoming call while using an app. In this case, the Host is notified
of the incoming call so that the Host can perform additional processes for the call-related events of the Controller.

 | 49

When the incoming call event is received, the LG Smart TV Host mutes the TV audio; and when it receives the call
end event, the TV unmutes the TV audio.

[Table] Parameters of CallStateChanged

Parameter Description

value

This value indicates an incoming call or the call end. The following two values
are available.
ringon: An incoming call is received
ringoff: A call has ended

[Table] Actions of CallStateChanged

Item Description

Persistent connection status Since this event does not occur frequently, use Connection: Close.

Related commands None

DragMode (Controller >> Host)

The Controller notifies that it will start or end drag & drop for an icon or an app on the Host screen.

When the drag start event is received, the Host internally prepare to process drag & drop. Subsequently, when it
receives the HandleTouchMove command from the Controller, the Host performs the drag process for the actual
icons or apps on the screen. Lastly, when the drag end event is received, the Host drops the dragged object(s) in the
current screen position of the Host. For details, see the usage scenario.

[Table] Parameters of DragMode

Parameter Description

value

This value determines the start or end of the drag process. The following two values
are available.
true: Start dragging
false: End dragging

[Table] Actions of DragMode

Item Description

Persistent connection status
Since HandleTouchMove triggers after the dragging action, use Connection:
Keep-Alive to request a persistent connection.

Related commands HandleTouchMove command

3DMode (Controller << Host)

The 3DMode event notifies the Controller whether the LG Smart TV Host has entered or exited the 3D display mode.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>DragMode</name>

 <value>true or false</value>

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>CallStateChanged</name>

 <value>ringon or ringoff</value>

 </api>

</envelope>

 | 50

[Table] Parameters of 3DMode

Parameter Description

value
true: Entered 3D mode
false: Extied 3D mode

[Table] Actions of 3DMode

Item Description

Persistent connection status
Since this event does not occur frequently, use Connection: Close to send
the event to the Controller.

Related command and query

[Command]
HandleKeyInput

[Query]
is_3d

Query (Controller >> Host)

Queries of the Remote Controller service complies with all common rules in the LG UDAP 2.0 Protocol Specification

and with additional rules defined for queries. They use HTTP GET to fetch data from the Host.

If a query is successfully performed, it returns HTTP/1.1 200 OK and the requested data. If there is an error, it returns
an error code other than HTTP/1.1 200 OK without any data. For details of response codes, refer to the LG UDAP
2.0 Protocol Specification.

Queries are as follows:
 Current channel information (Controller >> Host)
 Entire channels list (Controller >> Host)
 Operation mode of the Host UI (Controller >> Host)
 Volume information of the Host (Controller >> Host)
 Obtaining the capture image of the Host (Controller >> Host)
 3D mode of the Host (Controller >> Host)

Current channel information (Controller >> Host)

Fetches information on the currently broadcasting channel from the Host. Uses HTTP GET to fetch an XML
document at the URL below.

The following XML document is returned when querying the current channel information.

http://target_ip:port/udap/api/data?target=apiName¶mName1=URL_Encode(param_value1)¶mNa
me2=URL_Encode(param_value2)...

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>3DMode</name>

 <value>true or false</value>

 </api>

</envelope>

http://target_ip:port/udap/api/data?target=cur_channel

 | 51

[Table] Data Fields of Current Channel Information

Name of data field Value of data field

chtype

Reception type of the currently broadcasting channel. The following values are
available.
terrestrial: Terrestrial broadcast
cable: Cable broadcast
satellite: Satellite broadcast

major
Indicates the physical major number of the current channel. For 11-1 MBC DTV,
this value is 11.

displayMajor
Indicates the major number of the current channel. This value is used by the
Controller UI.

minor
Indicates the physical minor number of the current channel. For 11-1 MBC DTV,
this value is 1.

displayMinor
Indicates the minor number of the current channel. This value is used by the
Controller UI.

sourceIndex Source index of the current channel

physicalNum Physical number of the current channel

chname
Indicates the name of the current channel. For 11-1 MBC DTV, this value MBC
DTV.

progName Name of the program currently being received on the current channel

audioCh

Shows whether the current channel is an audio channel. The following values are
available.
0: Normal channel
1: Audio channel

inputSourceName Name of the current input source. Fixed as Antenna.

inputSourceType Type of the current input source. Fixed as 0.

labelName Label name of the current input source

inputSourceIdx Physical index value of the current input source

[Table] Actions of Current Channel Information

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related commands and events None

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="Current Channel">

 <data>

 <chtype>channel type</chtype>

 <major>major number of the channel</major>

 <displayMajor>display major number of the channel</displayMajor>

 <minor>physical major number of the channel </minor>

 <displayMinor>minor number of the channel</displayMinor>

 <sourceIndex>source index of the channel</sourceIndex>

 <physicalNum>physical number of the channel</physicalNum>

 <chname>channel name</chname>
 <progName>current program name</progName>

 <audioCh>Audio channel or not</audioCh>

 <inputSourceName>fixed value as Antenna</inputSourceName>

 <inputSourceType>input source type</inputSourceType>

 <labelName>label name of the current source</labelName>

 <inputSourceIdx>input source index</inputSourceIdx>

 </data>

 </dataList>

</envelope>

 | 52

Entire channels list (Controller >> Host)

Fetches information on the entire channels list from the Host. Uses HTTP GET to fetch an XML document at the URL
below.

The following XML document is returned when querying the entire channels list.

[Table] Data Fields of Entire Channels List

Name of data field Value of data field

chtype

Type of the current channel. The following values are available.
terrestrial: Terrestrial broadcast
cable: Cable broadcast
satellite: Satellite broadcast

major
Indicates the major number of the current channel. For 11-1 MBC DTV, this value
is 11.

minor
Indicates the minor number of the current channel. For 11-1 MBC DTV, this value
is 1.

sourceIndex Source index of the current channel

physicalNum Physical number of the current channel

chname
Indicates the name of the current channel. For 11-1 MBC DTV, this value MBC
DTV.

[Table] Actions of Current Channel Information

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related commands and events None

Note

For the entire channels list, dataList is not divided into multiple dataLists according to the broadcast reception type
(terrestrial, cable and satellite), but transferred as a single dataList (channel list) for compatibility with older versions
of apps.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="Channel List">

 <!-- Information of a channel -->
 <data>

 <chtype>channel type</chtype>

 <major>major number of the channel</major>

 <minor>minor number of the channel</minor>

 <sourceIndex>source index of the channel </sourceIndex>

 <physicalNum>physical major number of the channel </physicalNum>

 <chname>channel name</chname>

 </data>

 <!-- Channel information of different channels is listed -->
 <data>

 …
 </data>

 …
 </dataList>

</envelope>

http://target_ip:port/udap/api/data?target=channel_list

 | 53

Operation mode of the Host UI (Controller >> Host)

Fetches information on the operation mode of the current UI from the Host. Uses HTTP GET to fetch an XML
document at the URL below.

The following XML document is returned when querying the entire channels list.

[Table] Data Fields of Host UI Mode Information

Name of data field Value of data field

mode

Indicates which one is better for easy control of the current UI mode of the Host
between the magic remote Controller or the normal remote control.
VolCh: Normal broadcast screen. It is better controlled by the channel up/down and

volume up/down functions of the normal remote Controller.
TouchPad: An app or the web browser is running on the Host.

It is easier to use the mouse function of the magic remote Controller.

See HandleTouchMove, HandleTouchClick, HandleTouchWheel and DragMode.

[Table] Action of the current channel info

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related commands and events

[Command]
HandleKeyInput, HandleChannelChange, HandleTouchMove,
HandleTouchClick, and HandleTouchWheel.

[Event]
DragMode

Volume information of the Host (Controller >> Host)

Fetches volume information from the Host.

The following XML document is returned when querying the volume information.

[Table] Data Fields of Volume Information

Name of data field Value of data field

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="Volume Info">

 <data>

 <mute>true or false</mute>

 <minLevel>Minimum volume level</minLevel>

 <maxLevel>Maximum volume level</maxLevel>

 <level>Current volume level</level>

 </data>

 </dataList>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="UI Mode">

 <data>

 <mode>UI mode value</mode>

 </data>

 </dataList>

</envelope>

http://target_ip:port/udap/api/data?target=context_ui

http://target_ip:port/udap/api/data?target=volume_info

 | 54

Name of data field Value of data field

mute
Indicates the mute status. The following two values are available.
true: Audio muted
false: Audio not muted

minLevel Indicates the minimum volume level available for the Host. The value is 0.

maxLevel
Indicates the minimum volume level available for the Host. The usual value is
100.

level
Indicates the current volume level of the Host, in the range from minLevel to
maxLevel.

[Table] Actions of Volume Information

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related command HandleKeyInput

Obtaining the capture image of the Host (Controller >> Host)

Obtains the screen capture image of the Host.

When the capture image is requested, the screen is captured as a 960x540 size of JPEG image and delivered to the
Controller.

[Table] Actions for Obtaining Capture Image

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related commands and events None

3D mode of the Host (Controller >> Host)

Obtains the current 3D mode from the Host.

The following XML document is returned when querying the 3D mode of the Host.

[Table] Data Fields of 3D mode information

Name of data field Valud of data field

is3D
Shows the 3D mode of the current Host. The following values are available.
true: 3D mode
false: Not 3D mode

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="is3D">

 <data>

 <is3D>true or false</is3D>

 </data>

 </dataList>

</envelope>

http://target_ip:port/udap/api/data?target=screen_image

http://target_ip:port/udap/api/data?target=is_3d

 | 55

[Table] Actions for 3D mode

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related event 3DMode

Usage Scenario

This example shows the actual scenario for the drag & drop action. When the drag start event is received from the
Controller, the Host internally prepare to process drag & drop. Subsequently, when it receives the HandleTouchMove
command from the Controller, the Host performs the drag process for the actual icons or apps on the screen. Lastly,
when the drag end event is received, the Host drops the dragged object(s) in the current screen position of the Host.
The diagram below shows an overview of this operation.

[Figure] Drag & Drop example

Text Input Service (smartText)

This chapter describes on Text Input service that allows the Controller to send text input to the Host or notify that text
input is available.

This chapter includes the following sections.
 Discovery & Description
 Event (Controller <<->> Host)
 Usage Scenario

Discovery & Description

The ST value for searching the Text Input service is as follows.

If searching the SSDP with the ST value above, the descriptions are returned as below. The device section of the
description XML contains the model name and the UUID value of the actual Host.

<?xml version="1.0" encoding="utf-8"?>

urn:schemas-udap:service:smartText:1

 | 56

Note

Since udap:rootservice searchs all services existing on Host, it can also be used by Text Input service and
descriptions in Descriptions of All Service Profiles can be obtained.

Event (Controller <<->> Host)

Events of the Text Input service complies with all common rules in the LG UDAP 2.0 Protocol Specification and are

sent in the HTTP POST method using the path below.

The XML format used for the event is the common format defined in the LG UDAP 2.0 Protocol Specification. Black

fonts indicate fixed values, and red italic fonts indicate values variable depending on events.

Upon successful handling of an event, HTTP/1.1 200 OK is returned. For details of response codes, refer to the LG
UDAP 2.0 Protocol Specification.

Events are as follows:
 KeyboardVisible (Controller << Host)
 TextEdited (Controller <<->> Host)

KeyboardVisible (Controller << Host)

If the Host is ready to receive text input from the Controller, the Host sends an event to the Controller, requesting to
display the keyboard for text input. Also, while the Controller is entering text, if the Host becomes unavailable to
receive the text input, the Host sends an event to the Controller, requesting to hide the keyboard.

http://target_ip:port/udap/api/event

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- Additional parameters are listed if available -->

 </api>

</envelope>

 | 57

When the Controller receives the event, it must take appropriate actions to show or hide the keyboard.

[Table] Parameters of KeyboardVisible

Parameters Description

value
Indicates whether to show or hide the keyboard. The following two values are available.
true: Show keyboard
false: Hide keyboard

mode
Indicates the mode for showing the keyboard. The following two values are available.
default: Normal keyboard mode. Shows the system default keyboard on the screen.
password: Password input keyboard mode.

[Table] Action of KeyboardVisible

Actions Description

Persistent connection status
Since this event does not occur frequently, use Connection: Close to send the
event to the Controller.

Related events

HandleTouchClick event of the Remote Controller Service

When a text input box of the Host is clicked, the KeyboardVisible event is
triggered.
TextEdited event of the Text Input service

After sending the KeyboardVisible event to the Controller, the Host sends the
TextEdited event.

Figure below provides a diagrammatic representation of the Controller action for the KeyboardVisible event.

[Figure] Processing of KeyboardVisible Event

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>KeyboardVisible</name>

 <value>true or false</value>

 <mode>default or password</mode>

 </api>

</envelope>

 | 58

TextEdited (Controller <<->> Host)

After sending the KeyboardVisible event to the Controller, the Host sends the entire string currently entered in the
text input box of the Host to the Controller. The Controller must allow to insert the entire string received from the
TextEdited event in the keyboard input window so that the current input string can be re-edited and sent. The
Controller uses the same TextEdited event to send the string, that it was input, to the Host.

[Table] Parameters of TextEdited

Parameter Description

state

This parameter indicates the current input state of the text input box. The following three
values are available.

EditStart: Start editing text
Editing: Text editing in progress
EditEnd: End editing text

value

Entire string entered in the text input box
The string must be encoded in UTF-8. Up to 2KB are transferred. If the length of the
string exceeds 2 KB, the first 2 KB are shown in the text input box of the receiver's
device.

[Table] Actions of TextEdited

Item Description

Persistent connection status
Since the Controller can quickly send the event according to the user's input
speed, send the string over a persistent connection by using Connection:
Keep-Alive.

Related events KeyboardVisible

Figure below provides a diagrammatic representation of the process of sending TextEdited from the Host. The
TextEdited event sent from the Host is sent only once immediately after the text input box on the Host is clicked and
the KeyboardVisible event is generated. The input state is always set to Editing.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>TextEdited</name>

 <state>EditStart or Editing or EditEnd</state>

 <value> Entire string in the text input window </value>
 </api>

</envelope>

 | 59

[Figure] Sending of TextEdited Event by Host

When the Controller sends the string entered in its text input box to the Host, it must send the input state of the text
along with the entire string entered so far. For example, supposing that the text input screen is closed after entering
‘abcd’, the Controller sends the following message to the Host: (EditStart), ab (Editing), abc (Editing), abcd (EditEnd)
Figure below provides a diagrammatic representation of this operation. If the TextEdited event received from the Host
contains a string which is not null, the text input state starts editing.

[Figure] Sending of TextEdited Event by Controller

Usage Scenario

The figure below provides a diagrammatic representation of a usage scenario of the text input service. The following
process is illustrated: The Host generates the KeyboardVisible event --> The Host sends the TextEdited event -->
The Controller sends the TextEdited event.

 | 60

[Figure] Usage Process of Text Input Service

Mobile Home Service (mobilehome)

This chapter describes on Mobile Home service that fetches the list of currently installed apps from the Host and

 | 61

provides app functions, such as remote run and end, and other control functions.

This chapter includes the following sections.
 Discovery & Description
 Command (Controller >> Host)
 Event (Controller <<->> Host)
 Query (Controller >> Host)
 Usage Scenario

Discovery & Description

The ST value for searching the Mobile Home service is as follows.

If searching the SSDP with the ST value above, the descriptions are returned as below. The device section of the
description XML contains the model name and the UUID value of the actual Host.

<?xml version="1.0" encoding="utf-8"?>

Note

Since udap:rootservice searchs all services existing on Host, it can also be used by Mobile Home service and
descriptions in Descriptions of All Service Profiles can be obtained.

Command (Controller >> Host)

Commands of the Mobile Home service complies with all common rules in the LG UDAP 2.0 Protocol Specification

and are sent in the HTTP POST method using the path below.

The XML format used for the command is the common format defined in the LG UDAP 2.0 Protocol Specification.

Black fonts indicate fixed values, and red italic fonts indicate values variable depending on commands.

urn:schemas-udap:service:mobilehome:1

http://target_ip:port/udap/api/command

 | 62

Upon successful handling of an command, HTTP/1.1 200 OK is returned. For details of response codes, refer to the
LG UDAP 2.0 Protocol Specification.

Commands are as Follows:
 AppExecute (Controller >>Host)
 AppTerminate (Controller >> Host)

AppExecute (Controller >>Host)

This command starts a specific app on the Host. When the Host receives this command, it returns HTTP/1.1 200 OK
regardless of the execution result. The actual execution result of the app can be determined by receiving the
Mobilehome_App_Errstate event.

[Table] Parameters of AppExecute

Parameter Description

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

appname App name

contentId This is the unique content ID assigned by the contents provider.

[Table] Actions of AppExecute

Item Description

Persistent connection status
Since this command does not occur frequently, use Connection: Close to
send the command to the Controller.

Related events and queries

[Event]
Mobilehome_App_Errstate

[Query]
applist_get

AppTerminate (Controller >> Host)

This command terminates a specific app on the Host. When the Host receives this command, it returns HTTP/1.1 200
OK regardless of the execution result. The actual execution result of the app can be determined by receiving the
Mobilehome_App_Errstate event.

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>AppExecute</name>

 <auid>Unique ID of the app</auid>

 <appname>app name</appname>

 <contentId>Content ID</contentId>

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!-- Additional parameters are listed if available -->

 </api>

</envelope>

 | 63

[Table] Parameters of AppTerminate

Parameters Value

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

appname App name

[Table] Actions of AppTerminate

Item Description

Persistent connection status
Since this command does not occur frequently, use Connection: Close to
send the command to the Controller.

Related events and queries

[Event]
Mobilehome_App_Errstate

[Query]
applist_get

Event (Controller <<->> Host)

Events of the Mobile Home service complies with all common rules in the LG UDAP 2.0 Protocol Specification and

are sent in the HTTP POST method using the path below.

The XML format used for the event is the common format defined in the LG UDAP 2.0 Protocol Specification. Black

fonts indicate fixed values, and red italic fonts indicate values variable depending on events.

Upon successful handling of an event, HTTP/1.1 200 OK is returned. For details of response codes, refer to the LG
UDAP 2.0 Protocol Specification.

The events are as follows:
 Mobilehome_App_Errstate (Controller << Host)
 Mobilehome_App_Change (Controller << Host)

Mobilehome_App_Errstate (Controller << Host)

The Host sends the results for the AppExecute and AppTerminate commands, which are received from the Controller,
to the Controller.

http://target_ip:port/udap/api/event

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>apiName</name>

 <paramName>param value</paramName>

 <!— Additional parameters are listed if available -->

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="command">

 <name>AppTerminate</name>

 <auid>Unique ID of the app</auid>

 <appname>app name</appname>

 </api>

</envelope>

 | 64

[Table] Parameters of Mobilehome_App_Errstate

Parameter Description

action

This parameter is a value determining whether the processing result is for execution of
the app or for termination of the app. The following two values are available.
Execute: Indicates the result for execution of the app
Terminate: Indicates the result for termination of the app

detail

Indicates the actual result value for execution or termination of the app. The following
three values are available.
OK: Execution or termination of the app is successful
ERROR: Execution or termination of the app failed
BUSY: The app to be executed is already running or the app to be terminated failed to

be terminated due to a system problem of the Host

[Table] Actions of Mobilehome_App_Errstate

Item Description

Persistent connection status
Since this event does not occur frequently, use Connection: Close to
send the event to the Controller.

Related command AppExecute, AppTerminate

Mobilehome_App_Change (Controller << Host)

The Mobilehome_App_Change event is sent to the Controller when an app is added to or removed from the Host.

[Table] Parameters of Mobilehome_App_Change

Parameter Description

action

This parameter is a value determining whether the event is generated because an app
is added to the Host or because an app is removed. The following 2 values are
available.
Add: An app is added
Delete: An app is removed

apptype

This parameter is a value determining whether the app added or removed belongs to
the Premium category or the My Apps category of the Host. The following two values
are available.
2: The app in the Premium category is added or removed
3: The app in the My Apps category is added or removed

auid
This is the unique ID of the added or removed app, expressed as an 8-byte-long
hexadecimal string.

appname Name of the added or removed app

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>Mobilehome_App_Change</name>

 <action>Add or remove</action>

 <apptype>app type</apptype>

 <auid>Unique ID of the app</auid>

 <appname>app name</appname>

 </api>

</envelope>

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <api type="event">

 <name>Mobilehome_App_Errstate</name>

 <action>Execute or Terminate</action>

 <detail>Result of the action</detail>

 </api>

</envelope>

 | 65

[Table] Actions of Mobilehome_App_Change

Item Description

Persistent connection status
Since this event does not occur frequently, use Connection: Close to send
the event to the Controller.

Related commands AppExecute, AppTerminate

Query (Controller >> Host)

Queries of the Mobile Home service complies with all common rules in the LG UDAP 2.0 Protocol Specification and

with additional rules defined for queries. They use HTTP GET to fetch data from the Host.

If a query is successfully performed, it returns HTTP/1.1 200 OK and the requested data. If there is an error, it returns
an error code other than HTTP/1.1 200 OK without any data. For details of response codes, refer to LG UDAP 2.0
Protocol Specification.

Queries are as follows:
 Obtaining the Apps list (Controller >> Host)
 Obtaining the number of Apps (Controller >> Host)
 Obtaining the icon image of App (Controller >> Host)

Obtaining the Apps list (Controller >> Host)

This is used for fetching the list of apps installed on the Host from the Premium menu and the My Apps menu on the
Host.

The following XML document is returned when querying the app list.

[Table] Parameters for Obtaining Apps List

Parameter Value

type

This parameter specifies the category for obtaining the list of apps. The following
three values are available.
1: List of all apps
2: List of apps in the Premium category
3: List of apps in the My Apps category

http://target_ip:port/udap/api/data?target=apiName¶mName1=URL_Encode(param_value1)¶mNa
me2=URL_Encode(param_value2)...

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="App List">

 <data>

 <auid>Unique ID of the app</auid>

 <name>app name</name>

 <type>category of the app</type>

 <cpid>content ID</cpid>

 <adult>whether the app is adult all or not</adult>

 <icon_name> app icon name</icon_name>

 </data>

 <!-- Information of different apps are listed -->
 <data>

 …
 </data>

 …
 </dataList>

</envelope>

http://target_ip:port/udap/api/data?target=applist_get&type=integer_value_type&index=integer_value_ind
ex&number=integer_value_number

 | 66

Parameter Value

index Starting index of the apps list. The value range is from 1 to 1024.

number
This parameter specifies the number of apps to be obtained from the starting
index. This value has to be greater than or equal to the index value. The value can
be from 1 to 1024.

Note

If both index and number are 0, the list of all apps in the category specified by type is fetched.

[Table] Data field of obtaining Apps list

Data field name Value

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

name App name

type

Shows whether the app is under the Premium or My Apps category. The following
values are available.
2: App is under Premium category
3: App is under My Apps category

cpid Unique content ID given by Contents Provider

adult
Shows whether the app is an adult app. The following values are available.
true: Adult app
false: Not adult app

icon_name App icon name

[Table] Actions of fetching Apps list

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related commands AppExecute, AppTerminate

Note

For compatibility with older versions of apps, dataList is not divided into multiple dataLists according to the apps
category type (Premium, My Apps), but transferred as a single dataList (app list).

Obtaining the number of Apps (Controller >> Host)

Obtains the number of apps in the Premium menu and the My Apps menu on the Host.

Obtains the icon image of a specific app on the Host.

[Table] Parameters of obtaining the number of Apps

<?xml version="1.0" encoding="utf-8"?>

<envelope>

 <dataList name="App List">

 <data>

 <type>category of the app</type>

 <number>number of the total apps under the category</number>

 </data>

 </dataList>

</envelope>

http://target_ip:port/udap/api/data?target=appnum_get&type=integer_value_type

 | 67

Parameter Value

type

This parameter specifies the category for obtaining the list of apps. The following
three values are available.
1: List of all apps
2: List of apps in the Premium category
3: List of apps in the My Apps category

[Table] Data field of obtaining the number of Apps

Data field name Value

type This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

number
This parameter specifies the number of apps in the specified category. This value
has to be greater than or equal to the index value. The value can be from 1 to
2048..

[Table] Actions of obtaining the number of App

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close.

Related command AppExecute, AppTerminate

Obtaining the icon image of App (Controller >> Host)

Obtains the icon image of a specific app on the Host.

When obtaining app icon is queried, the PNG type image data is sent to the Controller.

[Table] Data field of obtaining the icon image of App

Parameter Value

Auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

App name App name

[Table] Actions of obtaining the icon image of App

Item Description

Persistent connection status
Since as many queries as desired can be requested continuously using the
auid and appname values returned from the apps list, request over a
persistent connection by using Connection: Keep-Alive.

Related query applist_get

Usage Scenario

The figure below shows the process of obtaining the apps list, fetching and displaying the icon images of apps and
executing a specific app on the Host when the app icon is touched.

http://target_ip:port/udap/api/data?target=appicon_get&auid=hex_string_auid&appname=URL_Encode(s
tring_appname)

 | 68

[Figure] Using Mobile Home Service

App To App Service (AppToApp)

This chapter provides definitions of general methods in which the apps on the Host and the Controller communicate
and interact. While the Mobile Home service includes definitions of some communications of apps between the Host
and the Controller, this chapter provides definitions of more general methods.

This chapter includes the following sections.
 Discovery & Description
 Command (Controller >> Host)
 Event (Controller <<->> Host)
 Query (Controller >> Host)
 Usage Scenario

Discovery & Description

The ST value for searching the App to App service is as follows.

 | 69

If searching the SSDP with the ST value above, the descriptions are returned as below. The device section of the
description XML contains the model name and the UUID value of the actual Host.

<?xml version="1.0" encoding="utf-8"?>

Note

Since udap:rootservice searchs all services existing on Host, it can also be used by App to App service and
descriptions in Descriptions of All Service Profiles can be obtained.

Command (Controller >> Host)

Command of the App to App service complies with all common rules in the LG UDAP 2.0 Protocol Specification and

are sent in the HTTP POST method using the path below.

Content format used in the command sends different values through each path, which differs from the common
formats defined in the LG UDAP 2.0 Protocol Specification.

Upon successful handling of an command, HTTP/1.1 200 OK is returned. For details of response codes, refer to the
LG UDAP 2.0 Protocol Specification.

Commands are as follows:
 Launch Application (Controller >> Host)
 Terminate Application (Controller >> Host)
 Send Message (Controller >> Host)

Launch Application (Controller >> Host)

This command starts a specific app on the Host. When the Host receives this command, it uses the return value of
the command to determine the success/failure status. (For example, HTTP/1.1 200 OK)

http://target_ip:port/udap/api/apptoapp/command/...

urn:schemas-udap:service:AppToApp:1

 | 70

[Table] Parameters of App Execute

Parameter Description

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

[Table] Actions of Launch App

Item Description

Persistent connection status
Since this command does not occur frequently, use Connection: Close to send
the command to the Controller.

Related events and queries Get Application AUID

[Table] Return values of Launch App (only different parts from the spec in meaning are described)

Return value Description

400 Bad Request : Wrong format requested

503 Service Unavailable : There is no corresponding app for the AUID

Terminate Application (Controller >> Host)

This command terminates an specific app on the Host. When the Host receives this command, it determines the
success/failure status with a returned value. (For example, HTTP/1.1 200 OK)

[Table] Parameters of Terminate App

Parameter Description

auid
This is the unique ID of the app, expressed as an 8-byte-long
hexadecimal string.

[Table] Actions of Terminate App

Item Description

Persistent connection status
Since this command does not occur frequently, use Connection: Close to send
the command to the Controller.

Related events and queries Get Application AUID

Send Message (Controller >> Host)

This command sends messages to a specific web app on the Host. When the Host receives this command, it
determines the success/failure status with a returned value. (For example, HTTP/1.1 200 OK) Only an web app can
receive this value. For the JavaScript API of the web app, see the “AppToApp Plugin and API” in Developing > API

section in this Library.

[Table] Parameters of Send Message

Parameter Description

http://target_ip:port/udap/api/apptoapp/command/{AUID}/term

http://target_ip:port/udap/api/apptoapp/command/{AUID}/run

http://target_ip:port/udap/api/apptoapp/command/{AUID}/send

 | 71

Parameter Description

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

[Table] Actions of Send Message

Item Description

Persistent connection status

If sending a single message to the Host, use Connection: Close. To send
multiple messages continuously and quickly to the Host, enable the persistent
connection by using Connection: Keep-Alive.
For detailed description on Persistent Connection, see LG UDAP 2.0 Protocol
Specification.

Related events and queries Receive Message event

Event (Controller <<->> Host)

Events of the App to App service complies with all common rules in the LG UDAP 2.0 Protocol Specification and are

sent in the HTTP POST method using the path below.

Upon successful handling of an event, HTTP/1.1 200 OK is returned. For details of response codes, refer to the LG
UDAP 2.0 Protocol Specification.

Event is as follows:
 Receive Message (Controller << Host)

Receive Message (Controller << Host)

This uses a JavaScript code of a web app on the Host to send messages to the Controller. At this point, the message
is the content sent from the TV app. For information on how to send from web apps, see the “AppToApp Plugin and
API” in Developing > API section in this Library. (the AUID sent from the Host to Controller is currently not used. The

value is always set to “0”.)

[Table] Actions of Receive Message

Item Description

Persistent connection status

Since this event assumes that multiple messages are continuously and
quickly sent to the Host, enable the persistent connection by using
Connection: Keep-Alive.
For detailed description on Persistent Connection, see LG UDAP 2.0
Protocol Specification.

Related command Send Message command

Query (Controller >> Host)

Queries of the App to App service complies with all common rules in the LG UDAP 2.0 Protocol Specification and

with additional rules defined for queries. They use HTTP GET to fetch data from the Host.

http://target_ip:port/udap/api/apptoapp/event/{AUID}/send

http://target_ip:port/udap/api/apptoapp/event/...

POST /udap/api/apptoapp/event/0/send HTTP/1.1

Host: 192.168.0.150:8080

Content-Type: text/plain; charset=utf-8

Content-Length: 44

Connection: Close

User-Agent: Linux/3.0.13 UDAP/2.0 GLOBAL-PLAT4/2.0

TV App Message!

 | 72

If a query is successfully performed, it returns HTTP/1.1 200 OK and the requested data. If there is an error, it returns
an error code other than HTTP/1.1 200 OK without any data. For details of response codes, refer to LG UDAP 2.0
Protocol Specification.

Queries are as follows:
 Get Application AUID (Controller >> Host)
 Get Application Status (Controller >> Host)

Get Application AUID (Controller >> Host)

This is used for obtaining the auid of an installed app by using the app name. For example, the app name “My First
Web App” can be used for obtaining the auid.

The example below is for obtaining the auid of an app named “abc”. In this case, the app name “abc” must be URL
encoded.

The following text document is returned when querying for the auid of an app. The content is the auid value.

[Table] Parameters of Get Application AUID

Parameter Value

Application Name
This indicates the name of the app (app title used for app registration). It must be
URL encoded. (e.g. “ABC DEF”  “ABC%20DEF”)

[Table] Data field of Get Application AUID

Data field name Value

N/A
This is the unique ID of the app, expressed as an 8-byte-long hexadecimal
string.

[Table] Actions of Get Application AUID

Item Description

Persistent connection status Since this query does not occur frequently, use Connection: Close..

Related command Launch App, Terminate App

Note

Apps are searched in the Premium, My Apps, USB and Downloaded categories in order. If there are duplicate app
names, the first auid found is returned. For example, if there are apps with the same name in Premium and USB,
the auid of the app in Premium is returned.

http://target_ip:port/udap/api/apptoapp/data/....

HTTP/1.1 200 OK

SERVER: Linux/3.0.13 UDAP/2.0 GLOBAL-PLAT4/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Fri Sep 21 06:31:40 2012 GMT

Connection: Close

Content-Type: text/plain; charset=utf-8

Content-Length: 5

12345

GET /udap/api/apptoapp/data/abc HTTP/1.1

User-Agent: UDAP/2.0

Connection: Close

Host: 192.168.0.153:8080

http://target_ip:port/udap/api/apptoapp/data/{Application Name}

 | 73

Get Application Status (Controller >> Host)

This is used for obtaining the current state of an app on the Host. This shows whether the app is loading, terminating
or running.

The following XML document is returned when querying the app status.

[Table] Data Fields of Obtaining App State

Data filed name Value

auid This is the unique ID of the app, expressed as an 8-byte-long hexadecimal string.

[Table] Data field of obtaining App status

Data filed name Value

N/A
Available values are NONE (inactive), LOAD (app is loading), RUN (app is running and on
focus), RUN_NF (app is running and off focus) and TERM (app is terminating)

[Table] Actions of obtaining App status

Item Description

Persistent connection status

To query the Host for app state continuously and quickly, enable the persistent
connection by using Connection: Keep-Alive.
For detailed description on Persistent Connection, see LG UDAP 2.0 Protocol
Specification.

Related command Launch App, Terminate App

Usage Scenario

The figure below illustrates the process and concept of communications between the Host and the Controller using
the App To App service.

SERVER: Linux/3.0.13 UDAP/2.0 GLOBAL-PLAT4/2.0

Cache-Control: no-store, no-cache, must-revalidate

Date: Fri Sep 21 06:03:39 2012 GMT

Connection: Keep-Alive

Keep-Alive: timeout=12, max=172800

Content-Type: text/plain; charset=utf-8

Content-Length: 4

NONE

GET /udap/api/apptoapp/data/12345/status HTTP/1.1

User-Agent: UDAP/2.0

Host: 192.168.0.153:8080

Connection: Keep-Alive

http://target_ip:port/udap/api/apptoapp/data/{AUID}/status

 | 74

[Figure] Basic AppToApp Workflow

Annex A Table of virtual key codes on remote Controller

The table below shows virtual key codes of the remote Controller keys used by the HandleKeyInput command in
Command. To send virtual key codes to the Host using HandleKeyInput, assign appropriate values for desired

purposes by referring to the table below.

[Table] Virtual key codes on remote Controller

Virtual key code
(decimal number)

Description

1 POWER

2 Number 0

3 Number 1

4 Number 2

5 Number 3

6 Number 4

7 Number 5

8 Number 6

9 Number 7

10 Number 8

11 Number 9

 | 75

Virtual key code
(decimal number)

Description

12 UP key among remote Controller’s 4 direction keys

13 DOWN key among remote Controller’s 4 direction keys

14 LEFT key among remote Controller’s 4 direction keys

15 RIGHT key among remote Controller’s 4 direction keys

20 OK

21 Home menu

22 Menu key (same with Home menu key)

23 Previous key (Back)

24 Volume up

25 Volume down

26 Mute (toggle)

27 Channel UP (+)

28 Channel DOWN (-)

29 Blue key of data broadcast

30 Green key of data broadcast

31 Red key of data broadcast

32 Yellow key of data broadcast

33 Play

34 Pause

35 Stop

36 Fast forward (FF)

37 Rewind (REW)

38 Skip Forward

39 Skip Backward

40 Record

41 Recording list

42 Repeat

43 Live TV

44 EPG

45 Current program information

46 Aspect ratio

47 External input

 | 76

Virtual key code
(decimal number)

Description

48 PIP secondary video

49 Show / Change subtitle

50 Program list

51 Tele Text

52 Mark

400 3D Video

401 3D L/R

402 Dash (-)

403 Previous channel (Flash back)

404 Favorite channel

405 Quick menu

406 Text Option

407 Audio Description

408 NetCast key (same with Home menu)

409 Energy saving

410 A/V mode

411 SIMPLINK

412 Exit

413 Reservation programs list

414 PIP channel UP

415 PIP channel DOWN

416 Switching between primary/secondary video

417 My Apps

